Satellite Crop Monitoring: Vegetation Control

Now, agricultural sector shows raising numbers of M&A  transactions which are successful in terms of fundraising for  their  projects. It gives grounds for assuming that amount of the companies involved in agriculture would be reducing within the next few years, while the volume of assets of the remaining participants would be growing up.

In terms of competitiveness, it is justified tendency: according to statistics data and private agriculture holdings reports, only farmers with large land bank are able to reach crop yield level  which at least approximates the European or global peers level, largely due to more available financing.

Agricultural holdings enter new stage of development, they have to change the degree of innovation in their field, whereas now it is one of the lowest among sectors of economy. In particular, this will bring improved crop cultivation, modern agricultural machinery and precision farming technologies – operational satellite monitoring of the farmland in order to spot significant deterioration of plants vegetation and consequent complex of measures to eliminate them (vegetation control).

Spectral characteristics of fields, results of texture analysis and changes in dynamics of colors brightness are being used to build indices and functions for harvest assessment and control. Processing of the satellite images in the red and infrared spectral range gives an opportunity not only to observe the fields in a real time mode, but also to generate database on the soil temperature and changes in its condition, rainfall, vegetation indexes for  different crops, with a time horizon of 10 and more years.

1.Fertilizing.  Rational fertilizing is extremely important for countries, whose chemical industry depends on imported raw materials and high gas prices. In particular this type of expenditures takes on average 17% in total crop cultivation cost. It is worth noticing that without using any additional options the satellite monitoring system enables to adequately measure only the level of required nitrogen content, nevertheless, the N-group fertilizers (mostly ammonium nitrate and urea) are the main types of minerals that are used by farmers. 

Due to the satellite crop monitoring  usage savings on fertilizers constitute more than 10% of annual expenditures on them. Thus for wheat the amount of savings in fertilizer can be from $8 to $40 per ha.

2.Wage costs. According to the results of our  studies, every 1,500 hectares of farmland additionally require from 3 to 5 agronomists being employed, whose salary starts from $625 per month (developing countries). Satellite crop monitoring reduces human capital needs by 1-2 employees. Savings on vegetation control from staff optimization is $0.5-$1 per month per ha.

3.Accuracy costs. Because of the outdated methods of determining fields boundaries and absence of the operational data on their shape and area changes, resulting from erosion, anthropogenic, climatic and other factors, each year actual processing cost is overstated by at least 1-3% per hectare of crops. Satellite crop monitoring effectively utilizes mentioned inefficiency. 

High quality satellite images with regular updates make it possible to avoid such losses. The average cost of 1 centner of wheat in developing counties amounts to $14.2/centner, the average yield – 33.5 centners/ha, therefore, due to modern technology use, you can save more than $9.4/ha.

4.Expenditures on fuel. It is recommended to do not less than 7 detours around the field per year in order to control crops development, including vegetation control. This requires approximately 0.4 l of diesel fuel (about $0.5) per hectare, while infrequent visits due  to satellite  monitoring give opportunity to save up to 40% of fuel per hectare ($0.2).

5.Expenditures on measurement of nitrogen level. Cost of a  laboratory analysis of a soil, which is recommended to undergo at least once every three years, is around $0.9-$1.2 per ha. Satellite crop monitoring gives information about the level of nitrogen in the soil, analyzing vegetation indices and its deviation for a particular field, saving annually $0.4 per hectare. 

In the developed countries, annual satellite crop monitoring service price of the crops starts from $1.5 per one hectare per year. Already  listed factors provide savings circa $27/ha per year. It is not possible to take into account all specific conditions for every particular case, but lets bear in mind that, sources of savings, mentioned  above, does not include the direct effect of technology – timely identification of deteriorations and precise preventive measures to save the crops while using satellite crop monitoring for vegetation control.

There are private satellite crop monitoring service providers: Monitoring Agricultural Resources (Italy), Cropio (USA/Germany), MapExpert (Ukraine), PrecisionAgriculture (Australia), Vega (Russia), eLeaf (Holland), Astrium-Geo (France).

In order to become a client of satellite crop monitoring service an agricultural company should sign a contract, pay fees, send shape-files with GPS-coordinates and Excel-file with cultivation history of the field.

Thereafter company’s manager (from the director of the group to agronomist of a single cluster) can  monitor, in the real time mode,  current soil temperature dynamics, weather conditions, vegetation index, precipitations and  field development deviations, compare them with historical values, using any stationary or tablet computer. Moreover, the obtained data can be passed on to other staff members or investors, be printed or uploaded into board computers of the agricultural machinery.

Long-term cooperation with farmers suggests that the use of satellite crop monitoring technology (including vegetation control) is spreading gradually but steadily among agricultural companies. In our opinion, this process would naturally correlate with increasing prestige, wages and labor efficiency of modern agronomists. Another reason is rising competition in world food markets and increasing costs of production components that are forcing agricultural companies to work more efficiently. So, those who will fail in efficiency improvements will be bought by those who succeed in it.

Read more

Potential Long-Term Benefits of No-Tillage and Organic Cropping Systems

There have been few comparisons of the performance of no-tillage cropping systems vs. organic farming systems, particularly on erodible, droughty soils where reduced-tillage systems are recommended. In particular, there is skepticism whether organic farming can improve soils as well as conventional no-tillage systems because of the requirement for tillage associated with many organic farming operations. A 9-yr comparison of selected minimum-tillage strategies for grain production of corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and wheat (Triticum aestivum L.) was conducted on a sloping, droughty site in Beltsville, MD, from 1994 to 2002. Four systems were compared: (i) a standard mid-Atlantic no-tillage system (NT) with recommended herbicide and N inputs, (ii) a cover cropbased no-tillage system (CC) including hairy vetch (Vicia villosa Roth) before corn, and rye (Secale cereale L.) before soybean, with reduced herbicide and N inputs, (iii) a no-tillage crownvetch (Coronilla varia L.) living mulch system (CV) with recommended herbicide and N inputs, and (iv) a chisel-plow based organic system (OR) with cover crops and manure for nutrients and postplanting cultivation for weed control. After 9 yr, competition with corn by weeds in OR and by the crownvetch living mulch in CV was unacceptable, particularly in dry years. On average, corn yields were 28 and 12% lower in OR and CV, respectively, than in the standard NT, whereas corn yields in CC and NT were similar. Despite the use of tillage, soil combustible C and N concentrations were higher at all depth intervals to 30 cm in OR compared with that in all other systems. A uniformity trial was conducted from 2003 to 2005 with corn grown according to the NT system on all plots. Yield of corn grown on plots with a 9-yr history of OR and CV were 18 and 19% higher, respectively, than those with a history of NT whereas there was no difference between corn yield of plots with a history of NT and CC.

Three tests of N availability (corn yield loss in subplots with no N applied in 2003–2005, presidedress soil nitrate test, and corn ear leaf N) all confirmed that there was more N available to corn in OR and CV than in NT. These results suggest that OR can provide greater long-term soil benefits than conventional NT, despite the use of tillage in OR. However, these benefits may not be realized because of difficulty controlling weeds in OR.

No-tillage cropping systems have been shown to offer many benefits to soils and production of grain crops in the eastern USA (Grandy et al., 2006). After 28 yr of continuous tillage treatments in Ohio, the notillage system had higher organic C, cation-exchange capacity, hydraulic conductivity, aggregate diameter, and water-holding capacity than tillage systems (Mahboubi et al., 1993). On well-drained soils, corn and soybean yields were consistently higher with continuous no-tillage than conventional tillage (Dick et al., 1991). No-tillage systems were shown to reduce drought stress and increase yields of grain crops on upland soils in the piedmont of the southern states (Denton and Wagger, 1992). Corn root length density was higher in the top 0.1 m of soil under no-tillage than under conventional tillage, probably a result of higher water-holding capacity, capillary space, and proportion of water-stable aggregates in the surface soil (Ball-Coelho et al., 1998).

Many of the improvements to soils as a result of notillage production are related to increases in soil organic C which in turn relates to improvements in soil aggregation, water-holding capacity, and nutrient cycling (Weil and Magdoff, 2004; Grandy et al., 2006). Soil organic C can also be increased by other strategies, including addition of winter annual cover crops into rotations, diversifying rotations with perennial crops, addition of manure-based amendments, and organic farming, which often employs all of the preceding strategies. For example, soil organic C and N were increased by both reducing tillage and using winter annual cover crops, leading the authors to suggest that the best management system would include no-tillage and a mixture of legume and nonlegume winter annual cover crops (Sainju et al., 2002). Rotations that included at least 3 yr of perennial forage crops had the highest soil quality scores with total organic C being identified as the most sensitive quality indicator (Karlen et al., 2006). Manure- and legumebased organic farming systems from nine long-term experiments across the USA were shown to increase soil organic C and total N compared with conventional systems (Marriott and Wander, 2006). Crop yields and/or soil organic C was increased by organic vs. conventional cropping systems in the East (Pimentel et al., 2005), Midwest (Delate and Cambardella, 2004), and West (Clark et al., 1998).

Most comparisons of soil improvements in organic vs. conventional cropping systems have been conducted under conventional tillage conditions. The dilemma for organic farmers is that the approaches for increasing soil organic C usually require tillage. Specifically, tillage is required for eliminating perennial legumes before rotation to annual crops, for incorporating manure to avoid N volatilization losses, or for preparing a seedbed and controlling weeds. Since an increase in tillage intensity and frequency has been shown to decrease soil C and N (Franzluebbers et al., 1999; Grandy et al., 2006), increases in organic matter by utilization of organic materials in organic farming may be offset by decreases in organic matter from tillage. Some authors have speculated that conventional no-tillage agriculture may provide superior soil improvement and potential environmental benefits compared with organic farming because of the tillage requirement of organic farming (Trewavas, 2004). The need for long-term research has been advocated to assess the relative merits of conventional no-tillage agriculture compared with organic farming (Macilwain, 2004). There is little literature reporting such long-term comparisons. One 6-yr study in Pennsylvania showed that some form of primary tillage was required for crop yields in organic systems to match those in conventional systems, but that a pure no-tillage organic system was not viable (Drinkwater et al., 2000).

A long-term experiment, the Sustainable Agriculture Demonstration Project (SADP), was initiated at Beltsville, MD, to compare selected no-tillage grain cropping systems and a reduced-tillage organic system on a sloping, droughty site typical of the mid-Atlantic piedmont. The standard for comparison was a notillage system typical of that used in this area. Two additional no-tillage systems, one including winter annual cover crops and another including a perennial crownvetch living mulch, were compared with this standard for their potential to improve soil organic matter, reduce external inputs, and enhance environmental protection on erodible soils. Finally, an organic cropping system that reduced tillage to the minimum necessary for incorporation of manure and for weed control was included in this comparison. Performance of these systems during the first 4 yr of the experiment, which included transition years for the organic system, was reported by Teasdale et al. (2000). A simulation of projected yields, economic returns, and environmental impacts was reported by Watkins et al. (2002). This paper reports results from a comparison of these systems over a 9-yr period as well as a 3-yr uniformity trial that followed… <more>

(Source:  John R. Teasdale,* Charles B. Coffman, and Ruth W. Mangum, Agronomy journal-   http://naldc.nal.usda.gov/download/13149/PDF)

Read more

Green Manures – Effects on Soil Nutrient Management and Soil Physical and Biological Properties

Both organic and conventional growers can gain many benefits from increased use of green manures. A wide range of plant species can be grown as green manures as different ones can bring a variety of benefits. Leguminous plants will fix nitrogen from the air whilst non-legumes will conserve nitrogen by preventing nitrate leaching. Green manures add organic matter to the soil, improving its physical and biological properties and they can assist with pest, disease and weed management. Some of the effects on soil physical properties may only become significant after several green manure crops have been grown over a period of perhaps five to ten years. Green manures are often categorised according to the time of year they are grown.

Winter green manures or cover crops are usually sown in the autumn and incorporated in the following spring and may be legumes (e.g. vetch) or non-legumes (e.g. rye). Summer green manures are usually annual legumes (e.g. crimson clover) which are grown to provide a short term boost for fertility. However, they could also be nonlegumes (e.g. mustard).

Longer term green manures are usually pure clover or grass/clover leys grown for two or three years. They are common in organic stockless rotations where they form the main source of nitrogen. However, in conventional farming these rotations would be harder to justify unless there were animals to graze them.

Green manures may also be used in intercropping systems, although in vegetable cropping it is important to avoid too much competition with the cash crop. Protected cropping systems offer particular challenges and opportunities for green manuring whilst fertility building in orchards can be difficult as nitrogen must be provided at the right time to ensure good fruit set and crop quality. Green manures grown as an understory can also attract beneficial insects.

Green manures are often grown to add nitrogen to the soil. In organic systems this represents the main source of nitrogen, whilst for conventional growers, it can be a way of minimising fertiliser inputs. Almost all legumes use Rhizobia bacteria to fix nitrogen from the atmosphere.  Unfortunately finding out how much  nitrogen is actually fixed is not easy  and depends on many factors.  Firstly, the correct strain of bacteria  must be present. Different bacterial  species interact with different groups  of legumes (clovers, lucerne and trefoils, lupins, beans etc.). If the same types of plants are regularly grown then sufficient bacteria will usually be present to establish sufficient nodules. Sometimes it is worth inoculating the seeds with the correct type of bacteria. There are several types available commercially, at a modest cost.

Sometimes the nitrogen fixation still does not occur, even if the roots form a symbiosis with the bacteria. Some strains will infect the plant but not be very effective. They can even drain the plant of resources

<a href=http://www.organicadvice.org.uk/Factsheet%2024.10.pdf>more…</a>

(Source: Horticulture Development Company – http://www.organicadvice.org.uk/Factsheet%2024.10.pdf)

Read more

100 Years of CLAAS

Today CLAAS, one of the world’s agricultural machinery manufacturer, celebrates its 100 anniversary. On behalf of our IEASSA team I’d like to congratulate this splendid innovative company and to wish them another 100 years of success and ever-burning inspiration to support agriculture business with the new state-of-art solutions all the world!

You can make a small tour through the company’s history by following this link.

 

Read more

Brief Explanation On Precise Agriculture

Taking into consideration that we welcome every interested person in our open community, we’d like to start with a brief lecture on precise agriculture to support our novices as well as to remind some details for our proficient users.

Precise agriculture means practical application of the conception of heterogeneity within one field or crop plantation. Such peculiarities can be provoked by landscape specifics, soil content and minerals bedding, groundwater content, climate peculiarities and cultivating crops specifics.

Precise agriculture envisages permanent crops and soil condition monitoring for the operational planning of measures for problem areas conditions optimization.

We believe in precise agriculture as far as it stipulates making reasonable well-timed decisions in crop production instead of spending extra money on out-of-date methods of cultivation which deny the heterogeneity of large plantings. By applying the idea of soil and climate diversity for a single field, learning how to ally with particular cropping conditions we start the new progressive episode of doing business in agriculture.

Tags: precise agriculture, efficiency, theory, practice, science

Read more

Normalized Difference Vegetation Index

Vegetation is a process of plants growth and development activity.

One of the most popular methods for vegetation level appraisal is Normalized Difference Vegetation Index (NDVI).

NDVI can be calculated using the following formula: NDVI=NIR-RED/NIR+RED, where NIR means near-infrared region reflection, RED – red region reflection. This correlation is based on different spectral features of chlorophyll in a visible and short-range IR range. Modern technology enable us to use objects spectral characteristics, results of textures and colours intensity analysis ; to develop indices and functions on basis of these features.

For a manual probing agrarians use such gadgets as Yara N-Tester, Trimble GreenSeeker and FieldScout. The price range for a gadget lays within $3-5 ths range.

For a automatic probing agrarians use such gadgets as Trimble GreenSeeker and Yara N-Sensor which can be installed on self-propelled agriculture machines. The price range for a gadget lays within $25-40 ths range.

For large agriculture facilities  becomes popular to use satellite crop monitoring. The vegetation level is calculated on the base of each pixel from satellite images. Each field analysis can by displayed as a digital vegetation map. The most popular service providers are Monitoring Agricultural Resources (Italy), Astrium-Geo (France), Cropio (USA/Germany), Vega (Russia).

Tags: vegetation, NDVI, NIR, IR, satellite, Cropio, Mapexpert,Vega, Yara N-Tester, Trimble GreenSeeker, FieldScout, Trimble GreenSeeker, Yara N-Sensor, Normalized Difference Vegetation Index, crop, monitoring

Read more

Green Class

State-of-the-art technologies use efficiency can not be unambiguously estimated. High-capacity productive tractors cause depth soil degradation caused by machines weight which can not be eliminated via no-till technology use as far as this problem requires larger technical efforts and deep tillage works lead to faster nutrients withdrawal. Chemical fertilizers cause soil depletion, while certain profitable crops growing leads to further higher production costs. It is rather questionable if we should replace machines with human labour, still we consider it helpful to remind about natural fertilizers to replace synthetic ones.

Some experts identify natural fertilizers as sideration – the process of ploughing under green mass from intentionally cultivated plants in order to enrich soil with nitrogen and organic nutrients. Still we can include the rests of current crop as natural fertilizer. For example we can gather, recycle and distribute the rests of straw as manure or utilize natural ashes. The ashes from only one sunflower top consist about 30 g of potassium which plants require to raise water circulation efficiency and apparently prevents from drought.

In fact “green fertilizers” use is capable in two ways: ploughing under mown crops on its cultivation field or transportation to the place use. In some cases it is possible to interplant the main crop on the field covered with green manure. Talking about the method drawbacks we must mention constrained delays in main crops cultivation provoked by green manure cultivation periods, diseases spreading and additional efforts aiming to plough under the green mass. Nevertheless the technology advantages significantly exceed the effect of the above-mentioned hardships. First of all we must mention fertilizers economy: for example green manure of legumes increases nitrogen receipts. Moreover 50% of synthetic nitrogen fertilizers quantity runs out within the first 3 month, while natural nitrogen withdraws much more slower. Secondly, natural fertilizers slow down soil degradation and even restore problem soil characteristics, while it supports natural humus generation. Thirdly, the crops with minimal chemicals content fit high quality standards and can be sold at a relatively higher price. Finally, this technology brings essential economical effect as far as it assures from fertilizers prices increase and problems with fertilizers long-term storage. Within 2009-2012 ammonia contract price has tripled (Middle East FOB, Yuzhnyy FOB).

“Green fertilizers” are particularly useful in cases of dung substitution in those countries which have problems with livestock population shortage.

There is no doubt that natural fertilizers can not be considered as the universal measure, while the resources scarcity and food deficit force agrarians to apply more and more extensive business measures. Not all agrarians are willing to wait until green manure grows to use it as fertilizer – it looks much more profitable to get two crops in a same time and to sell them at a reasonable price. But if we speak about long-term efficiency – it would be great to remind an old proverb “the miser pays twice” and look at “green fertilizers ” consumption increase all over the world.

Tags: fertilizers, green manure, wheat, sunflower, tractor, ammonia, no-till, “green fertilizers”

Read more

Welcome!

We proudly introduce our web-site which will reflect our most recent developments, products and ideas.

Our permanent address is www. ieassa.com

 

 

Read more